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Abstract
As von Wright ([31]) points out, the study of preference logic faces the problem that 
almost every principle proposed as fundamental to one preference logic may be reject-
ed by another one. Mullen ([18]) observes that this problem arises from the mistaken 
belief that concept construction of preference can satisfactorily be carried out in isola-
tion from theory construction. In this paper we propose a new version of preference 
logic (CEUMPL) based on conditional expected utility maximisation theory, which 
can furnish a solution to this problem. Conditional expected utility maximisation 
can be a valid decision rule for decision makings under certainty, risk, uncertainty and 
ignorance. It has the merit of covering such a wide scope. We provide CEUMPL with 
a Domotor-type ([5]) semantics that is measurement-theoretic. From a measurement-
theoretic viewpoint of decision theory, there is a tradition to explain an agent’s beliefs 
and desires in terms of his preferences [and vice versa]. This explanation takes the form 
of a representation theorem of conditional expected utility maximisation: if [and only 
if] an agent’s preferences satisfy such-and-such conditions, there exist a probability 
function and a utility function such that he should act as a conditional expected util-
ity maximiser. The “if ” part of each representation theorem of conditional expected 
utility maximisation can provide the measurability conditions of an agent’s prefer-
ences for his beliefs and desires. Domotor’s representation theorem is the only known 
one of conditional expected utility maximisation that has the “only if ” part. So only 
by virtue of Domotor’s representation theorem, we can explain an agent’s preferences 
in terms of his beliefs and desires via conditional expected utility maximisation. We 
provide CEUMPL with a model by developing the idea of Naumov ([19]) and provide 
CEUMPL with a proof system by developing that of Segerberg ([25]). The semantics of 
Packard’s ([20]) preference logic is also based on conditional expected utility maxi-
misation. But this logic is incomplete. CEUMPL, on the other hand, has the merit of 
being not only complete but also decidable.
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1　Introduction

The notion of preference plays an important role in many disciplines, including philosophy and eco-
nomics.1 Some of notable recent developments in ethics make substantial use of preference logic.2 In 
computer science, preference logic has become an indispensable device. The founder of preference 
logic is the founding father of logic itself, Aristotle. Book III of the Topics can be regarded as the first 
treatment of the subject. From the 1950s to the 1960s, the study of preference logic flourished in 
Scandinavia—particularly by Halldén ([6]) and von Wright ([30]) and in the U.S.A.—particularly 
by Martin ([17]) and Chisholm and Sosa ([4]). Recently with the help of Boutilier’s idea ([3]), van 
Benthem, Otterloo and Roy reduced preference logic to multi-modal logic ([29]).

Mullen refers to the following problem the study of preference logic faces:

As von Wright ([31]) has recently commented, the development of a satisfactory logic of 
preference has turned out to be unexpectedly problematic. The evidence for this lies in 
the fact that almost every principle which has been proposed as fundamental to a prefer-
ence logic has been rejected by some other source. [[18]: 247]

For example, the status of such logical properties as (transitivity), (contraposition), (conjunc-
tive expansion), (disjunctive distribution) and (conjunctive distribution) is as follows:

Example 1.
von Wright ([30]) Martin Chisholm and Sosa

Transitivity + + +
Contraposition  + 
Conjunctive Expansion +  
Disjunctive Distribution   
Conjunctive Distribution +  

‘+’ denotes the property in question being provable in the logic in question. ‘’ denotes the property 
in question not being provable in the logic in question. (Conjunctive expansion) says that an agent 
does not prefer ϕ1 to ϕ2 iff he does not prefer ϕ1  ϕ2 to ϕ2  ϕ1. (Disjunctive distribution) says 
that if he does not prefer ϕ1  ϕ2 to ϕ3, then he does not prefer ϕ1 to ϕ3 or does not prefer ϕ2 to ϕ3. 
(Conjunctive distribution) says that if he does not prefer ϕ1 to ϕ2 and does not prefer ϕ3 to ϕ2, then 
he does not prefer ϕ1  ϕ3 to ϕ2.

Mullen observes upon the cause of the above problem as follows:

The mistake, therefore, upon which the philosophical logic of preference rests is the be-
lief that concept construction [of preference] can satisfactorily be carried out in isolation 
from theory construction. The most general conclusion is then that preference logician 

1　[8] gives a comprehensive survey of preference in general.
2　[7] gives a comprehensive survey of preference logic.
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must also be a value theoretician, since a logic of preference can only be tested in the 
process of testing the more general theory in which it is embedded. [[18]: 255]

The aim of this paper is to propose a new version of complete and decidable preference logic—
conditional expected utility maximiser’s preference logic (CEUMPL) by virtue of which we can 
explain an agent’s preferences in terms of his beliefs and desires via conditional expected utility 
maximisation theory, which can furnish a solution to this problem. We provide CEUMPL with a 
Domotor-type ([5]) semantics that is a kind of measurement-theoretic and decision-theoretic one. 
The semantics of Packard’s ([20]) preference logic is also based on conditional expected utility 
maximisation. But this logic is incomplete. CEUMPL, on the other hand, has the merit of being not 
only complete but also decidable.

On the basis of [[15]: 13] with a slight modification, we can classify decision problems into the 
following four types. We say that an agent is in the realm of decision making under:

Certainty1.	  if each leads to a specific outcome with the probability of 1 that is known 
to him,
Risk2.	  if each action leads to one of a set of possible specific outcomes each of which 
occurs with a probability that is known to him,
Uncertainty3.	  if each action leads to one of a set of possible specific outcomes, some of 
which occur with a probability that is known to him, but the other of which occur 
with a probability that is unknown to him,
Ignorance4.	  if each action leads to one of a set of possible specific outcomes each of 
which occurs with a probability that is unknown to him.

Conditional expected utility maximisation can be a valid decision rule for decision makings under 
certainty, risk, uncertainty and ignorance. It has the merit of covering such a wide scope.

Measurement theory is one that can provide measurement with its mathematical foundation.3 
The mathematical foundation of measurement had not been studied before Hölder developed his 
axiomatisation for the measurement of mass ([9]). [14], [26] and [16] are seen as milestones in the 
history of measurement theory. In measurement theory, at least four kinds of measurement have 
been objects of study:

ordinal measurement,1.	
extensive measurement,2.	
difference measurement,3.	
conjoint measurement.4.	

On the other hand, there are at least two kinds of decision theory:

3　[23] gives a comprehensive survey of measurement theory.
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evidential decision theory,1.	 4

causal decision theory.2.	 5

The former is designed for decision makings that have statistical or evidential connections 
between actions and outcomes. The latter is designed for decision makings that have causal con-
nections between actions and outcomes. Both theories take the form of subjective expected utility 
theory. Jeffrey ([11]) is a typical example of the former. Ramsey ([21]) is a typical example of the 
latter. Ramsey regarded desire as attitude toward outcomes but belief as one toward propositions. 
Moreover, he regarded preference as attitude toward an ordered pair of gambles, that is, hybrid 
entities composed of outcomes and propositions. In 1965 Jeffrey ([11]) developed an alternative to 
Ramsey’s theory. He regarded both desire and belief as attitudes toward propositions. Moreover, 
he regarded preference as attitude toward an ordered pair of propositions. In this sense we call Jef-
frey’s a mono-set theory. Its initial axiomatisation was provided in terms of measurement theory by 
Bolker ([2]) on the mathematics developed in [1]. Jeffrey ([10]) modified Bolker’s axioms to accom-
modate null propositions. Domotor ([5]) also axiomatised a version of mono-set theory. Mono-set 
theories are more suitable for the semantics of logic than Ramsey’s, for regarding propositions as 
the semantic values of sentences is simpler than regarding gambles as those when we wish to pro-
vide logic with its semantics. Especially, Domotor’s theory is the most suitable for the semantics of 
logic of these three mono-set theories, for constructing the syntactic counterparts of the axioms of 
Domotor’s theory is easier than of the other two theories.

Like Bolker’s and Jeffrey’s, Domotor’s theory has a conjoint structure. In them, preferences 
are decomposable into beliefs and desires. From a measurement-theoretic viewpoint of decision 
theory, there is a tradition to explain an agent’s beliefs and desires in terms of his preferences [and 
vice versa]. This explanation takes the form of a representation theorem of [conditional] expected 
utility maximisation:

If [and only if] an agent’s preferences satisfy such-and-such conditions, there exist a 
probability function and a utility function such that he should act as a conditional ex-
pected utility maximiser (existence). [In addition, the pair of such probability function 
and utility function is unique up to a kind of transformation (uniqueness).]

The “if ” part of each representation theorem of conditional expected utility maximisation can 
provide the measurability conditions of an agent’s preferences for his beliefs and desires. Domotor’s 
representation theorem is the only known one of conditional expected utility maximisation that 
has the “only if ” part. So only by virtue of Domotor’s representation theorem, we can explain an 
agent’s preferences in terms of his beliefs and desires via conditional expected utility maximisa-
tion.

The structure of this paper is as follows. In Section 2, we prepare the projective-geometric 
concepts for the measurement-theoretic settings: characteristic function, Grassmann product, 

4　[11] gives a comprehensive survey of evidential decision theory.
5　[13] gives a comprehensive survey of causal decision theory.
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symmetric product and four-fold Grassmann product, and define preference space and preference 
space assignment, and state necessary and sufficient conditions for representation: (connected-
ness) and (projectivity), and prove a representation theorem. In Section 3, we define the language 
LCEUMPL of CEUMPL, and define a Domotor-type structured Kripke model M for preference, and 
provide CEUMPL with a truth definition, and provide CEUMPL with a proof system, and show 
that (reflexivity), (transitivity), (connectedness) and (impartiality) are all provable in CEUMPL, and 
that neither (contraposition), (conjunctive expansion), (disjunctive distribution) nor (conjunctive 
distribution) is provable in CEUMPL, but that (restricted contraposition), (restricted conjunctive 
expansion), (restricted disjunctive distribution) and (restricted conjunctive distribution) are all 
provable in CEUMPL, and prove the soundness, completeness and decidability of CEUMPL.

2　Measurement-Theoretic Settings
2.1　Projective-Geometric Concepts
We need some projective-geometric concepts to state Domotor’s representation theorem. We de-
fine the preliminaries to the measurement-theoretic settings as follows:

Definition 1 (Preliminaries). W is a nonempty set of possible worlds. Let F denote a Boolean field of 
subsets of W. We call A  F a proposition.

We define a characteristic function as follows:

Definition 2 (Characteristic Function I). A characteristic function: F  {0, 1}W is one where for 
any A  F we have A: W  {0, 1} such that

					      1　if w  A,
					      0　otherwise,

for any w  W.

Because it is impossible to characterise multiplication of probabilities and utilities in terms of 
union, intersection and preferences, we need a Cartesian product . is defined also on Cartesian 
products of propositions:

Definition 3 (Characteristic Function II).

					     1　if w1  A and	 w2  B,				  
					     0　	   otherwise,

for any w1,w2  W.
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By means of , we define a Grassmann product A B as follows:

Definition 4 (Grassmann Product). A B is a 3-valued random variable defined by

A B:= (A  B) (B  A).

By means of , we define a symmetric product (A,B,C,D) as follows:

Definition 5 (Symmetric Product). (A,B,C,D) is a 9-valued random variable defined by

By means of , we define a four-fold Grassmann product (A,B,C,D) as follows:

Definition 6 (Four-Fold Grassmann Product). (A,B,C,D) is a 25-valued random variable 
defined by

2.2　Preference Space and Preference Space Assignment
We define preference space and preference space assignment as follows:

Definition 7 (Preference Space and Preference Space Assignment). w is a weak preference rela-
tion on F2. A w B is interpreted to mean that the agent does not prefer A to B at a time in w. w 
and w are defined as follows:

For any w  W, (W,F,w,  ,,+,) is called a preference space. Let PS denote the set of all preference 

spaces. ρ : W  PS is called a preference space assignment.
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2.3　Conditions for Representation
We can state necessary and sufficient conditions for representation as follows:

1.	 A w B or B w A (Connectedness),
2.	 If (Ai w Bi and Ci w Di for any i < n),

then (if An w Bn, then Dn w Cn),
where						     　(Projectivity)6

 2.4　Domotor’s Representation Theorem
We can prove Domotor’s representation theorem as follows:7

Theorem 1 (Representation). For any w  W, (W,F,w,  ,,+,) satisfies (connectedness) and 
(projectivity) iff there are Pw : F  IR and Uw : F\   IR such that the following conditions hold 
for any A,B  F\:

(•	 W,F, Pw) is a finitely additive probability space,
A•	  w B iff Uw(A)  Uw(B),
If•	  A   B  =  , Uw(A  B) = Pw(A|A  B)Uw(A) + Pw(B|A  B)Uw(B),
When•	  A  F, if Pw(A) = 0, then A = .

Proof. Except that the proof is relative to world, it is similar to that of [[5]:184–194].

2.5　Scott’s Separation Theorem
Domotor’s representation theorem follows from Scott’s separation theorem.

Theorem 2 (Separation, Scott [24]). Let I be a finite-dimensional real linear vector space and 
let 　 　　 　H  I, where H = H = {v : v  H} is finite and all its elements have rational 
coordinates with respect to a given basis. Then there exists a linear functional F : I  IR such that for 
any v  H

F(v)  0 iff v  G

iff for any v, vi  H (1  i  n) we have both

(1)　v  G or v  G

and

(2) If vi  G for any i < n, then v  G, where 

6　Generally, conjoint measurement requires the cancellation axiom as a necessary one. (Projectivity) can be 
regarded as a generalisation of the cancellation axiom.
7　In Theorem 1, we do not obtain the uniqueness result. But it does not matter when we provide CEUMPL 
with its semantics.
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(1) corresponds to (connectedness) and (2) corresponds to (projectivity). Scott’s separation theorem 
is based on the general criterion for the solvability of a finite set of homogeneous linear inequali-
ties.

3　Conditional Expected Utility Maximiser’s Preference Logic CEUMPL
3.1　Language
The language LCEUMPL of CEUMPL is defined as follows:

Definition 8 (Language). Let S denote a set of sentential variables, WPR a weak preference relation 
symbol, and FCP a four-fold Cartesian product symbol. LCEUMPL is given by the following rule:

ϕ ::= s |  | ϕ | ϕ1  ϕ2 | WPR(ϕ1, ϕ2) | FCP(ϕ1, ϕ2, ϕ3, ϕ4),

where s  S, and nestings of FCP do not occur. ,, and  are introduced by the standard defini-
tions. IND and SPR are defined as follows:

• IND(ϕ1, ϕ2) := WPR(ϕ1, ϕ2)  WPR(ϕ2, ϕ1),
• SPR(ϕ1, ϕ2) := WPR(ϕ1, ϕ2)  IND(ϕ1, ϕ2).

The set of all well-formed formulae of LCEUMPL will be denoted by ΦLCEUMPL
.

3.2　Semantics
DAG In order to state					     　　 of (projectivity) in logical 

terms, we use FCP. To provide FCP with a truth definition, we use a directed acyclic graph (DAG). 
We got a hint about this idea from [19]. We define directedness as follows:

Definition 9 (Directedness). A graph G is directed if G consists of a nonempty set W of vertices (pos-
sible worlds) and an irreflexive accessibility relation R on W. G is denoted as (W,R).

We define a path as follows:

Definition 10 (Path). A sequence [w1, . . . ,wn+1] of vertices is a path of length n in G from w1 to wn+1 
if (wi,wi+1)  R for i=1, . . . , n.

By means of a path, we define a cycle.

Definition 11 (Cycle). A cycle of length n is a path [w1, . . . ,wn, w1,] from w1 to w1.

By means of a circle, we define acyclicity as follows:
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Definition 12 (Acyclicity). G is acyclic if G contains no cycles.

By means of directedness and acyclicity, we define a directed acyclic graph (DAG) as follows:

Definition 13 (DAG). G is a directed acyclic graph (DAG) if G is both directed and acyclic.

Remark 1. DAGs can be considered to be a generalisation of trees in which certain subtrees can be 
shared by different parts of the tree.

Model By means of a DAG, we define a Domotor-type structured Kripke model M for preference 
as follows:

Definition 14 (Model). M is a quintuple (W,R, L, V, ρ), where W is a nonempty set of possible 
worlds, R is an accessibility relation on W2, (W,R) is a DAG, L : R  {π1, π2, π3, π4} is a function 
that assigns labels to the edges of the graph, any two edges leaving the same vertex have different labels, 
any vertex either has π1-, π2-, π3- and π4-labeled outgoing edges or none of them, V is a truth assign-
ment to each s  S for each w  W, and ρ is a preference space assignment that assigns to each w  W 
(W,F,w,  ,,+,) that satisfies (connectedness) and (projectivity). For any w1  W, by πi(w1) (i = 
1, 2, 3, 4) we mean the unique w2  W such that R(w1,w2) and L(w1,w2) = πi if such world exists.

Truth Definition We can provide CEUMPL with the following truth definition:

Definition 15 (Truth). The notion of ϕ  ΦLCEUMPL
 being true at w  W in M, in symbols 

(M,w) |=CEUMPL ϕ is inductively defined as follows:

• (M,w) |=CEUMPL s　iff　V (w)(s) = true,
• (M,w) |=CEUMPL ,
• (M,w) |=CEUMPL ϕ1  ϕ2　iff　(M,w) |=CEUMPL ϕ1 and (M,w) |=CEUMPL ϕ2,
• (M,w) |=CEUMPL ϕ　iff　(M,w) |= CEUMPL ϕ,
• (M,w) |=CEUMPL FCP(ϕ1, ϕ2, ϕ3, ϕ4)　iff　(M, π1(w)) |=CEUMPL ϕ1

and (M, π2(w)) |=CEUMPL ϕ2 and (M, π3(w)) |=CEUMPL ϕ3

and (M, π4(w)) |=CEUMPL ϕ4,
• (M,w) |=CEUMPL WPR(ϕ1, ϕ2)　iff　[[ϕ1]] w [[ϕ2]],

where [[ϕ]] := {w  W : (M,w) |=CEUMPL ϕ}. If (M,w) |=CEUMPL ϕ for all w  W, we write 
 M |=CEUMPL ϕ and say that ϕ is valid in M. If ϕ is valid in all Domotor-type structured models for 
preference, we write |=CEUMPL ϕ and say that ϕ is valid.

3.3　Syntax
Syntactic Counterpart of (Projectivity) We devise a syntactic counterpart of (projectivity). By 
developing the idea of [25], we define DCi (Disjunction of Conjunctions) as follows:



The 3rd BESETO Conference of Philosophy330

Definition 16 (Disjunction of Conjunctions). For any i (1  i  4n + 4), DCi is defined as the 
disjunction of all the following conjunctions:

such that exactly i of the dj’s and i of the ej’s are the negation symbols, the rest of them being the empty 
string of symbols.
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By means of DCi, we define DDC as follows:

Definition 17 (Disjunction of Disjunctions of Conjunctions).

Proof System We provide CEUMPL with the following proof system.

Definition 18 (Proof System).

• Axioms of CEUMPL

(A1)	 All tautologies of classical sentential logic,

(A2)	 WPR(ϕ1, ϕ2) WPR(ϕ2, ϕ1)
	 (Syntactic Counterpart of Connectedness),

	 DDCn
i=1(ϕi, ψi, χi, τi)  

(A3)	 (n
i=1(WPR(ϕi, ψi) WPR(χi, τi))  (WPR(ϕn, ψn)  WPR(τn, χn)))

	 (Syntactic Counterpart of Projectivity),

(A4)	 FCP(,,,) (Tautology and Four-Fold Cartesian Product),

	 FCP(ϕ1  ϕ2, ψ1  ψ2, χ1  χ2, τ1  τ2)
(A5)	  (FCP(ϕ1, ψ1, χ1, τ1)  FCP(ϕ2, ψ2, χ2, τ2))
	 (Conjunction and Four-Fold Cartesian Product 1),

(A6)
	 (FCP(ϕ1, μ, ν, ξ)  FCP(ϕ2, μ, ν, ξ))  FCP(ϕ1  ϕ2, μ, ν, ξ)

	 (Conjunction and Four-Fold Cartesian Product 2),

(A7)
	 (FCP(λ, ψ1, ν, ξ)  FCP(λ, ψ2, ν, ξ))  FCP(λ, ψ1  ψ2, ν, ξ)

	 (Conjunction and Four-Fold Cartesian Product 3),

	
(FCP(λ, μ, χ1, ξ)  FCP(λ, μ, χ2, ξ))  FCP(λ, μ, χ1  χ2, ξ)

	 (Conjunction and Four-Fold Cartesian Product 4),

(A9)	
(FCP(λ, μ, ν, τ1)  FCP(λ, μ, ν, τ2))  FCP(λ, μ, ν, τ1  τ2)

	 (Conjunction and Four-Fold Cartesian Product 5),

(A10)

	FCP(ϕ, ψ, χ, τ )
	  (FCP(ϕ, ψ, χ, τ )  FCP(ϕ, ψ, χ, τ )
	  FCP(ϕ, ψ, χ, τ )  FCP(ϕ, ψ, χ, τ ))
	 (Negation and Four-Fold Cartesian Product).
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• Inference Rules of CEUMPL

(R1)
	 ϕ1　ϕ1  ϕ2

  　     ϕ2		  (Modus Ponens),

(R2)
	 　ϕ1  ϕ2

	 WPR(ϕ2, ϕ1)	 (Weak Preference Necessitation),

(R3)
	 ϕ  ψ  χ  τ

	 FCP(ϕ, ψ, χ, τ )	 (Four-Fold Cartesian Product Necessitation).

A proof of ϕ  ΦCEUMPL is a finite sequence of LCEUMPL-formulae having ϕ as the last formula such that 
either each formula is an instance of an axiom, or it can be obtained from formulae that appear earlier 
in the sequence by applying an inference rule. If there is a proof of ϕ, we write CEUMPL ϕ.

3.4　Logical Properties
(Reflexivity), (transitivity), (connectedness) and (impartiality) are all provable in CEUMPL.

Proposition 1 (Reflexivity, Transitivity, Connectedness and Impartiality).

•	 CEUMPL WPR(ϕ, ϕ)　(Reflexivity),

•	 CEUMPL WPR((ϕ1, ϕ2)  WPR(ϕ2, ϕ3))  WPR(ϕ1, ϕ3)　(Transitivity),

•	 CEUMPL WPR(ϕ1, ϕ2)  WPR(ϕ2, ϕ1)　(Connectedness),

•	 CEUMPL ((SPR(ϕ2, ϕ3)  SPR(ϕ2, ϕ4))  (SPR(ϕ3, ϕ1)  SPR(ϕ4, ϕ1)))
	  ((IND(ϕ1, ϕ2)  ((ϕ1  ϕ3)  (2  3)  (ϕ1  4)  (2  4)  ))
	  (WPR(ϕ1  3, 2  3)  WPR(ϕ1  4, 2  4)))　(Impartiality 1),

•	 CEUMPL ((SPR(3, 2)  SPR(2, 4))  (SPR(4, 2)  SPR(2, 3)))
	  ((IND(ϕ1, 2)  ((ϕ1  3)  (2  3)  (2  4)  (ϕ1  4)  ))
	  (WPR(ϕ1  3, 2  3)  WPR(2  4, ϕ1  4)))　(Impartiality 2),

•	 CEUMPL (IND(2, 3)  IND(2, 4))
	  ((IND(ϕ1, 2)  ((ϕ1  3)  (2  3)  (ϕ1  4)  (2  4)  ))
	  (IND(ϕ1  3, 2  3)  IND(ϕ1  4, 2  4)))　(Impartiality 3).

Neither (contraposition), (conjunctive expansion), (disjunctive distribution) nor (conjunctive 
distribution) is provable in CEUMPL.
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Proposition 2 (Contraposition, Conjunctive Expansion, Disjunctive Distribution and Con-
junctive Distribution).

•	  CEUMPL WPR(1, 2)  WPR(2,1) (Contraposition),

•	  CEUMPL WPR(1, 2)  WPR(1  2, 2  1)
(Conjunctive Expansion),

•	  CEUMPL WPR(1  2, 3)  (WPR(1, 3)  WPR(2, 3))
(Disjunctive Distribution of Left Disjunction),

•	  CEUMPL WPR(1, 2  3)  (WPR(1, 2)  WPR(1, 3))
(Disjunctive Distribution of Right Disjunction),

•	  CEUMPL (WPR(1, 2)  WPR(3, 2))  WPR(1  3, 2)
(Conjunctive Distribution of Left Disjunction),

•	  CEUMPL (WPR(1, 2)  WPR(1, 3))  WPR(1, 2  3)
(Conjunctive Distribution of Right Disjunction).

(Restricted contraposition), (restricted conjunctive expansion), (restricted disjunctive distri-
bution) and (restricted conjunctive distribution) are all provable in CEUMPL.

Proposition 3 (Restricted Contraposition, Restricted Conjunctive Expansion, Restricted Dis-
junctive Distribution and Restricted Conjunctive Distribution).

•	 CEUMPL ((1  2)  )  (WPR(1, 2)  WPR(2,1))
(Restricted Contraposition),

•	 CEUMPL ((1  2)  )  (WPR(1, 2)  WPR(1  2, 2  1))
(Restricted Conjunctive Expansion),

•	 CEUMPL ((1  2)  (2  3)  (3  1)  )
 (WPR(1  2, 3)  (WPR(1, 3)  WPR(2, 3)))
(Restricted Disjunctive Distribution of Left Disjunction),

•	 CEUMPL ((1  2)  (2  3)  (3  1)  )
 (WPR(1, 2  3)  (WPR(1, 2)  WPR(1, 3)))
(Restricted Disjunctive Distribution of Right Disjunction),

•	 CEUMPL ((1  2)  (2  3)  (3  1)  )
 ((WPR(1, 2)  WPR(3, 2))  WPR(1  3, 2))
(Restricted Conjunctive Distribution of Left Disjunction),
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•	 CEUMPL ((1  2)  (2  3)  (3  1)  )
 ((WPR(1, 2)  WPR(1, 3))  WPR(1, 2  3))
(Restricted Conjunctive Distribution of Right Disjunction).

3.5　Metalogic
We can prove the soundness of CEUMPL.

Theorem 3 (Soundness). For every ϕ  ΦLCEUMPL
 , if CEUMPL ϕ, then

|=CEUMPL ϕ.

Proof. The nontrivial part of the proof is to show that (A3) is true in every model.

We can prove the completeness of CEUMPL.

Theorem 4 (Completeness). For every ϕ  ΦLCEUMPL
 , if |=CEUMPL ϕ, then

CEUMPL ϕ

Proof. By Lindenbaum Lemma and Truth Lemma.

We can prove the decidability of CEUMPL.

Theorem 5 (Decidability). CEUMPL is decidable.

Proof. By considering the maximal number of nestings of WPR in a given formula.

4　Conclusions
In this paper we have proposed a new version of complete and decidable preference logic—condi-
tional expected utility maximiser’s preference logic (CEUMPL) by virtue of which we can explain an 
agent’s preferences in terms of his beliefs and desires via conditional expected utility maximisation, 
which can furnish a solution to the problem Mullen posed. We have provided CEUMPL with a 
Domotortype semantics that is measurement-theoretic. We have provided CEUMPL with a model 
by developing the idea of Naumov and provided CEUMPL with a proof system by developing that 
of Segerberg.
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